

Presentation of the Research (3rd year)

Marinopoulou Panagiota
PhD Candidate at the University of Alicante

The Challenges of Physics Education and Visually Impaired Students

Enhancing Accessibility and Engagement

International Online Symposium La Nucia
5-7-of July

Marinopoulou Panagiota
PhD Candidate at the University of Alicante

Introduction

Overview of the importance of inclusive education in schools:

- Ensures equal access to learning opportunities for all students
- Fosters a sense of belonging and promotes diversity in the classroom

Introduction

What are the Specific challenges faced by visually impaired students in physics:

- Reliance on visual information such as graphs, diagrams, and demonstrations
- Necessitates specialized teaching strategies and resources

Understanding Visual Impairment

Types of Visual Impairment:

Blindness:

- Very limited or no vision

Low Vision:

- Significant visual impairment that affects daily activities but some sight remains

Understanding Visual Impairment

Definition of Visual Impairment:

- Refers to a range of vision issues that cannot be corrected with standard glasses or contact lenses
- Includes both partial sight and complete blindness

Statistics on Visually Impaired Students in Education:

- Approximately 285 million people worldwide have visual impairments
- About 19 million of these are children
- Unique challenges require tailored support and resources for equitable learning outcomes

Challenges in Physics Education

- About 19 million of these are children...
- Unique challenges require tailored support and resources for equitable learning outcomes
- Visual nature of physics content (graphs, diagrams, experiments)
- Accessibility issues with traditional teaching methods and materials

Teaching Strategies

Use of tactile materials (braille, raised-line drawings)

- 1. Tactile Diagrams: These are diagrams that are embossed or created with materials that can be felt, allowing students to touch and explore physical concepts like circuits, forces, or geometric shapes.
- 2. Raised-Line Drawings: Similar to tactile diagrams, these drawings use raised lines to represent different elements of a diagram or graph, making it easier for students to interpret.
- 3. 3D Models: Physical or digital 3D models that represent complex structures or concepts such as atoms, planetary orbits, or electromagnetic fields, providing a tangible way to understand abstract ideas.

Teaching Strategies

- Interactive Simulations: Digital simulations or interactive apps that allow students to explore physics concepts through touch and sound, providing auditory feedback along with tactile interaction.
- ▶ Braille Resources: Books, worksheets, or diagrams that are printed in Braille, allowing visually impaired students to independently study physics topics.

Teaching Strategies

- Audio descriptions and verbal explanations
- / Talking more, writing less
- Incorporating assistive technology
- 1. Screen readers and braille displays
- 2/ Audio-based learning tools
- Specialized software for visual data interpretation

Curriculum Adaptations

Adapting Lab Experiments for Tactile and Auditory Engagement:

- Tactile Models: Use 3D models and tactile diagrams to represent physical concepts and experimental setups
- Auditory Descriptions: Provide detailed verbal descriptions of visual elements and processes during experiments
- Guided Participation: Pair visually impaired students with sighted peers or assistants for hands-on guidance

Curriculum Adaptations

Modifying Assessment Methods to Be More Inclusive:

- Oral Exams: Allow oral examinations where students can explain concepts and answer questions verbally
- Practical Demonstrations: Assess students through practical tasks and demonstrations they can perform using tactile and auditory cues
- Afternative Formats: Provide assignments and tests in accessible formats, such as braille or digital text compatible with screen readers

Teacher Training and Support

Importance of Training Teachers in Inclusive Education Practices:

- ✓ <u>Awareness and Sensitivity</u>: Training programs should include modules on understanding the needs and challenges of visually impaired students
- ✓ <u>Adaptation Skills</u>: Teachers should learn how to adapt teaching materials and methods to be more accessible
- ✓ <u>Use of Assistive Technology</u>: Educators need to be proficient in using and teaching assistive technologies to support visually impaired students

Teacher Training and Support

Resources and Professional Development Opportunities:

- Workshops and Seminars: Regular workshops and seminars on inclusive education practices and ossistive technologies
- Online Courses: Access to online courses and webinars that provide flexible learning opportunities for teachers

- Collaborative Networks: Establish networks of educators to share resources, strategies, and experiences in teaching visually impaired students
- Institutional Support:
 Schools and educational institutions should provide ongoing support and resources for teachers, including access to specialized equipment and materials

Future Directions

- Innovations in assistive technologies
- Research and development in inclusive education methods

But first of all its important...

Call to action for educators, policymakers, and stakeholders

Thank you for the attendance

